

METODY ELEKTRONOVÉ MIKROSKOPIE PRO CHARAKTERIZACI ZEOLITOVÝCH KATALYZÁTORŮ

Michal Mazur

FACULTY OF SCIENCE Charles University

Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic

CUCAM project

Sociální sítě:

@cucam_charlesuniversity

http://cucam.cuni.cz/

@cucam.charlesuniversity

@CUCAM8

Napište mi: michal.mazur@natur.cuni.cz

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Přehled

CHARLES UNIVERSITY

Elektronová mikroskopie

Zeolitové katalyzátory

Metody EM a související

ելե

Syntéza zeolitu - ADOR

Elektronová difrakce

Vyhlídka

Electron microscopy

microbiologyinfo.com

CHARLES UNIVERSITY CENTRE OF ADVANCED MATERIALS

1924: French physicist **Louis de Broglie** (1892–1987) realizes that electron beams have a wavelike nature similar to light. Five years later, he wins the <u>Nobel Prize in Physics</u> for this work.

1931: German scientists Max Knoll (1897–1969) and his pupil Ernst Ruska (1906–1988) build the first experimental TEM in Berlin.

1933: **Ernst Ruska** builds first electron microscope that is more powerful than an optical microscope.

1941: Manfred Von Ardenne and Bodo von Borries patent - electron scanning microscope (SEM).

1981: Binnig and Rohrer - detailed images of atoms on the surface of a crystal of gold.

1986: **Binnig and Rohrer** share the <u>Nobel Prize in Physics</u> with the original pioneer of electron microscopes, **Ernst Ruska**.

https://www.explainthatstuff.com/electronmicroscopes.html

2017: Dubochet, Frank, Henderson share the <u>Nobel Prize in Chemistry</u> for development of **Cryo-Electron Microscopy**

Jak zeolity vypadají a co jsou?

երել

CHARLES UNIVERSITY

(řecky: zein – "vařit" a líthos – "kámen")

- Mikroporézní krystalické hlinitokřemičitany složené z TO₄ tetraedrů propojených přes své vrcholy, kde T = Si, Al (Ti, B, Ga, Ge, Fe …)
- Řada se jich nachází v přírodě (scolelit, mordenit, stilbit, phillipsit...)
- 248 struktur (IZA) různá chemická složení mřížky různé zastoupení kationtů...

Credit: Dr Jan Přech

Zeolites

CHARLES UNIVERSITY CENTRE OF ADVANCED MATERIALS

Porous aluminosilicates

Low electron-beam stability

Adsorbed water decreases stability

Low dose of electrons required

Mintova et al., Science, 335, 6064, pp. 70-73

Hlazeni piva? – Zeolity!

https://www.mmspektrum.com/novinka/pivni-kegy-s-integrovanym-chlazenim.html

Zeolity v katalýze

T. Ennaert et al., Chem. Soc. Rev., 2016,45, 584-611

Layered zeolites

Molekulové síto

Malé molekuly mohou difundovat skrz kanály, větší ne

Credit: Dr Jan Přech

ፍገሞ

CHARLES UNIVERSITY

Zeolite catalysts in scale

D.N. Rainer, M. Mazur, **RSC Catalysis book series**, 2020

Variety of zeolite forms

Mitchell, S. *et al. Nat Commun* **6,** 8633 (2015)

Zeolites are no longer a challenge

ETS-10

Alvaro Mayoral, Paul A. Anderson, Isabel Diaz, Zeolites are no longer a challenge: Atomic resolution data by Aberration-corrected STEM, Micron, 68, 2015, 146-151

Zeolites are no longer a challenge

M. Mazur, V. Kasneryk, J. Přech, F. Brivio, C. Ochoa-Hernández, A. Mayoral, M. Kubů and J. Čejka, Inorganic Chemistry Frontiers, 2018, 5, 2746-2755.

Scanning Electron Microscopy

Q. Chen et al., J. Am. Chem. Soc. 2007, 129, 43, 13305-13312

Analcime – reversed crystal growth

Atomic Force Microscopy

Smith, R. L., Eliášová, P., Mazur, M., Attfield, M. P., Čejka, J. and Anderson, M. W. (2014), Chem. Eur. J., 20: 10446-10450.

Combined methods

CHARLES UNIVERSITY CENTRE OF ADVANCED MATERIALS

Image is shown with courtesy of NenoVision s.r.o. and Dr. Monika Vilémova and Institute of Plasma Physics of CAS.

Correlative Probe and Electron Microscopy (CPEM)

Image is shown with courtesy of NenoVision s.r.o.

Transmission electron microscopy

CHARLES UNIVERSITY

W. Wan et al., *Inorg. Chem. Front.*, 2018,**5**, 2836-2855

Sample preparation

Structure determination from TEM 4 CHARLES UNIVERSITY CENTRE OF ADVANCED MATERIALS

(B)

SSZ-48

P. Wagner, J. Phys. Chem. B 1999, 103, 39, 8245-8250

SSZ-61

Smeets, S. et al., Angew. Chem. Int. Ed., 53: 10398-10402.

Electron Tomography - tilt

Thermofisher (FEI), Eindhoven, NL, test measurements

Electron Tomography - slices

Thermofisher (FEI), Eindhoven, NL, test measurements

CHARLES UNIVERSITY CENTRE OF ADVANCED MATERIALS

Atomic Electron Tomography

Source: https://www.eurekalert.org/multimedia/pub/54422.php

CHARLES UNIVERSITY CENTRE OF ADVANCED MATERIALS The ADOR (Assembly-Disassembly-Organization-Reassembly) process involves the synthesis of 3D germanosilicate during first step. Then, selective disassembly of it to form a layered material followed by organization of layers and reconnection of them to get new zeolite.

The ADOR is a way for the preparation of layered zeolite precursors, that can be further modified to get the **related zeolitic architectures**.

12 new topologies were revealed so far.

Roth et al., Nature Chem., 2013, **5**, 628–633 Mazur et al., J. Mater. Chem. A, 2018,6, 5255-5259 ADOR zeolites with nanoparticles

IPC-4 (**PCR**)

IPC-2 (**OKO**)

10-ring: 6.1 Å × 5.1 Å 8-ring: 4.7 Å × 3.5 Å 12-ring: 7.0 Å × 5.6 Å 10-ring: 6.1 Å × 4.7 Å P. Eliasova et al. **Chem. Soc. Rev.**, 2015

Encapsulation of Pt NPs into the IPC-2 and IPC-4 zeolites

Shape-selective hydrogenation

Y. Zhang et al. Microporous Mesoporous Mater., 279, 2019, 364

ADOR zeolites with nanoparticles

Y. Zhang et al. Microporous Mesoporous Mater., 279, 2019, 364

Tvarová selektivita

Y. Zhang et al. Mater. Today Nano, 2019, in press

ADOR zeolites with nanoparticles

Y. Zhang et al. Microporous Mesoporous Mater., 279, 2019, 364

Subnanometric Pt

New method to generate subnanometric platinum from 2D to 3D zeolite

Corma et al.

Nat. Mater., **2017**, 16, 132-138

Nat. Commun., **2018**, *9*, 574

Shape-selective hydrogenation

Our idea:

Different length of surfactants

MCM-22P swollen with Pt NPs

CHARLES UNIVERSITY CENTRE OF ADVANCED MATERIALS

Y. Zhang et al. Catal. Today, 324, 2019, 135

MCM-22 with Pt NPs

- The uniform distribution of Pt NPs
- The size of the Pt NPs increases with the length of swelling agent

Y. Zhang et al. Catal. Today, 324, 2019, 135

Nanoparticles size distribution

գյգ

CHARLES UNIVERSITY

Location of NPs

CHARLES UNIVERSITY CENTRE OF ADVANCED MATERIALS

MCM-22 samples with Pt NPs

Pt NPs are merged into bulk MCM-22

Some Pt NPs are bigger than the voids and channels of MCM-22 structure which creates some defects in the framework

Need for the synthesis optimisation

NP stuck in between layers of MCM-22 disallowing full connection

Y. Zhang et al. Catal. Today, 324, 2019, 135

Spent catalyst imaging

1.0

1.5

2.0

Sizo nm

2.5

3.0

Y. Zhang et al. Mater. Today Nano, 2019, in press

Cryo-EM

T. Li et al., J. Mater. Chem. A, 2019,7, 1442-1446

MFI

Chemistry Nobel 2017 went to Jacques Dubochet, Joachim Frank, and Richard Henderson.

Cryo-EM

MFI

S. Kumar et al., J. Am. Chem. Soc. 2008, 130, 51, 17284-17286

Electron diffraction

CHARLES UNIVERSITY

Electron diffraction technique utilizes the wave nature of electron in studying the crystal structure of the sample of interest in terms of chemical positions and nanoscale's atomic positions with high precision. This technique studies the phenomenon of the diffraction pattern resulting from the interference of a beam of electrons and the crystalline materials.

M. Asadabad et al. Modern Electron Microscopy in Physical and Life Sciences DOI: 10.5772/61781

Structure determination from ED

Views along axis a* (a), axis b* (b), and axis c* (c) of the 3D ADT reconstructed volume of zeolite IM-17 (**UOV**)

Y. Lorgoullioux et al., **RSC Adv.**, 2014,**4**, 19440-19449

ED vs XRD

Yun, Y., Zou, X., Hovmoller, S. & Wan, W. (2015). IUCrJ 2, 267-282.

RED in use – MOF

3D data to create reciprocal lattice
→ Structure determination was possible

M. Infas H. Mohideen, et al. J. Mater. Chem. C, 2019,7, 6692-6697

Serial Electron Diffraciton

frame: 188, crystal: 2, size: 0.351 µm²

frame: 252, crystal: 1, size: 0.350 µm²

frame: 230, crystal: 1, size: 0.060 μm^2

frame: 419, crystal: 1, size: 0.441 µm²

M. Cichocka *et al., J. Appl. Cryst.* (2018). **51**, 1652-1661

Metody elektronové mikroskopie se neustále vyvíjejí a jsou přístupnější a výkonnější

Jedná se o velmi přímé metody charakterizace katalyzátoru

Použití stále přesnější a automatizovanější přípravy vzorků před obrazovaním např. ultramikrotom / FIB, plazmové čištění

Charakterizace katalyzátorů je snazší a přesnější, např. subnanometrická částice kovů, stanovení struktury malých krystalů atd.

Rotační difrakční metody budou standardní metodou pro stanovení struktury

Poděkování

• CUCAM Group – Charles University in Prague

michal.mazur@natur.cuni.cz

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Authors would like to thank the OP VVV Call Support for Excellent Research Teams, MS2014 + Project Registration Number: CZ.02.1.01 / 0.0 / 0.0 / 15_003 / 0000417.

CUCAM projekt

Sociální sítě:

@cucam_charlesuniversity

http://cucam.cuni.cz/

@cucam.charlesuniversity

@CUCAM8

Napište mi: michal.mazur@natur.cuni.cz

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

